

ИМ 04

ЭЛЕКТРОКАРДИОГРАФ одноканальный ЭК1Т-07 "АКСИОН"

Методика поверки ЮМГИ.941311.007Д

Библиотека Ладовед. ОСК Юрий Войкин 2008г.

СОДЕРЖАНИЕ

1	Операции поверки	.3
2	Средства поверки	5
3	Требования безопасности	7
4	Условия поверки	7
5	Подготовка к поверке	8
6	Проведение поверки	.9
6.	1 Внешний осмотр	9
6.	2 Опробование	.9
6.	3 Определение метрологических характеристик	10
7	Оформление результатов поверки	.19
П	риложение А	.20

Настоящая методика поверки распространяется на электрокардиографы одноканальные ЭК1Т-07 "АКСИОН" (далее - ЭК)) и устанавливает методы и средства их первичной и периодической поверок.

Межповерочный интервал 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1	Номер пункта	Прове, операці	-
Наименование операции	документа по поверке	первичной поверке	периоди- ческой поверке
1 Внешний осмотр	6.1	По	•
·	_	Да	Да
2 Опробование 3 Определение метрологических характеристик: 3.1 Определение относительной погрешности ЭК при	6.2 6.3.1	Да	Да Да
измерении напряжения 3.2 Определение относительной			
погрешности установки чувствительности ЭК	6.3.2	Да	Нет

Продолжение таблицы 1					
	Номер	Проведение			
Наименование операции	пункта		ции при		
	документа	первичной	периоди-		
	ПО	поверке	ческой		
2.2. Опроположе	поверке		поверке		
3.3 Определение					
относительной погрешности					
установки скорости	600	П-	Нет		
движения носителя записи	6.3.3.	Да	пет		
3.4 Определение					
относительной погрешности					
ЭК при измерении	0.00	_	_		
интервалов времени	6.3.3	Да	Да		
3.5 Определение					
относительной погрешности					
ЭК при измерении частоты					
сердечных сокращений	004				
(YCC)	6.3.4	Да	Да		
3.6 Определение					
относительной погрешности					
регистрации калибровочного					
сигнала	6.3.5	Да	Нет		
3.7 Определение					
постоянной времени	6.3.6	Да	Нет		
3.8 Определение					
неравномерности					
амплитудно-частотной					
характеристики (АЧХ)	6.3.7	Да	Да		
3.9 Определение напряже-					
ния внутренних шумов,					
приведенных ко входу	6.3.8	Да	Да		
3.10 Определение					
коэффициента ослабления					
синфазных сигналов	6.3.9	Да	Нет		
4					

2 СРЕДСТВА ПОВЕРКИ

Таблица 2_____

2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.

Номер	Наименование и тип основного или вспомогательного		
пункта	средства поверки; обозначение нормативного		
документа	документа, регламентирующего технические требования		
ПО	и метрологические и основные технические		
поверке	характеристики средства поверки		
6.3.1 -	Генератор функциональный ГФ-05 ТУ42-2-561-89,		
6.3.9	постоянное запоминающее устройство (ПЗУ) "ЧСС"		
	Диапазон частот от 0,01 до 600 Гц.		
	Погрешность установки частоты в пределах ±0;5%.		
	Диапазон размаха напряжения выходного сигнала		
	от 0,03 до 20 В.		
	Погрешность установки размаха напряжения		
	выходного сигнала:		
	- в пределах ±1,25% для значений размаха от 0,3 до 10,0 В;		
	- в пределах +1,5% для значений размаха от 0,3 до 10,0 мВ;		
	•- в пределах ±2,5% для значений размаха 0,1; 0,2 B;		
	- в пределах ±3,0% для значений размаха 0,1; 0,2 мВ;		
	- в пределах ±8,0% для значений размаха 0,03; 0,05 B;		
	- в пределах ±9,5% для значений размаха 0,03; 0,05 мВ;		
	- в пределах ±10% для действующего значения 20 В		

Продолжение таблицы 2

Номер Наименование и тип основного или вспомогательного пункта средства поверки; обозначение нормативного Документа¹ документа, регламентирующего технические требования и метрологические и основные технические

по и поверке

характеристики средства поверки

Лупа измерительная ЛИ-3-10 ГОСТ 25706-83

Увеличение- 10^x.

Предел измерений 15 мм.

Цена деления 0,1 мм

Штангенциркуль ШЦ-11-250-0,05 ГОСТ 166-80

Предел измерений 250 мм.

Цена деления нониуса 0,05 мм.

Примечание - При поверке допускается применять другие средства поверки, обеспечивающие измерение параметров сигналов с требуемой точностью.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 К поверке изделия допускается персонал, допущенный к работе на электроустановках до 1000 В.
- 3.2 Перед включением ЭК осмотрите сетевой шнур блока питания и кабеля пациента на отсутствие повреждения изоляции.

4 УСЛОВИЯ ПОВЕРКИ

- 4.1 При проведении поверки должны соблюдаться следующие условия:
 - температура окружающего воздуха (20 ± 5)° С;
- атмосферное давление от 97,3 до 105,3 кПа (от 730 до 790 мм. рт. ст.);
 - относительная влажность воздуха (65 ± 15)%;
 - напряжение питающей сети (220 ± 4,4) В;
 - частота питающей сети (50 ± 0,5) Гц;
- на рабочем месте для уменьшения электромагнитных помех удалите сетевые кабели и шнуры приборов от схемы проверки и входных цепей ЭК на расстояние не менее 1 м;
- удалите от рабочего места источники электромагнитных помех, влияющих на работу ЭК и средств поверки.

5 ПОДГОТОВКА К ПОВЕРКЕ

- 5.1 Проверьте наличие свидетельств о поверке или оттисков поверительных клейм на средствах поверки.
- 5.2 Ознакомьтесь с формуляром и руководством по эксплуатации ЭК.
- 5.3 Подготовьте к работе поверяемый ЭК и средства поверки согласно эксплуатационной документации.
- 5.4 При определении метрологических характеристик установите следующие режимы работы ЭК (если иные не оговорены особо):
 - питание от сети переменного тока;
 - отведение V6;
 - чувствительность 10 мм/мВ;
 - скорость движения носителя записи 25 мм/с;
 - фильтр выключен;
 - успокоение выключено.
- 5.5 При поверках электрод C6 подключайте к клемме X1, электрод N к клемме X3, остальные электроды к клемме X2 (позиционные обозначения приведены в соответствии со схемами в приложении A).

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

- 6.1.1 При проведении внешнего осмотра ЭК проверьте:
- наличие формуляра, руководства по эксплуатации на ЭК;
 - соответствие комплектности ЭК формуляру;
- отсутствие механических повреждений, влияющих на работоспособность ЭК;
- наличие органов управления и коммутации, четкость фиксации их положения;
- обеспечение чистоты соединителей ЭК, кабеля пациента и сетевого блока питания (далее БПС);
 - четкость маркировки.

6.2 Опробование

- 6.2.1 Произведите опробование работы ЭК:
- включите ЭК, установив тумблер в положение" О "<
- нажимайте кратковременно кнопку "mm/mV". На индикаторе значение чувствительности должно изменяться последовательно с 10 на 5, 20 и 10;
- нажимайте кратковременно кнопку "mm/s". На индикаторе значение скорости движения носителя записи должно измениться с 25 на 50 и 25;
- нажмите кратковременно кнопку ">O<". На индикаторе знак" < " должен смениться на знак" ";
- нажимайте кратковременно кнопку "ФИЛЬТР". На индикаторе знак " " должен смениться буквой "F" и обратно знаком" ";
- нажимайте кратковременно кнопку " -» ". На индикаторе знак " х х х " должен смениться на символ " I ", буква "А" должна смениться буквой "Р";

- нажмите кнопку "ПУСК/СТОП". На носителе записи должны регистрироваться друг под другом надписи "Ф.И.О.:", "ДАТА:", "25 mm/s", "10 mm/mV", "ЭК1Т-07". После надписей регистрируется прямоугольный калибровочный сигнал, имеющий линейный размер размаха от 9,5 до 10,5 мм, и наименование отведения " I";
- нажмите повторно кнопку "ПУСК/СТОП". Регистрация должна прекратиться.

При невыполнении любого требования прекратите дальнейшую поверку, направьте прибор в ремонт.

6.3 Определение метрологических характеристик

6.3.1 Определение относительной погрешности ЭК при измерении напряжения проводите в соответствии со схемой, приведенной на рисунке A.1, с одновременной подачей на входы ЭК постоянного напряжения \pm (300 \pm 30) мВ при соответствующих положениях переключателя S2 и меандра с частотой 10 Гц, размахом согласно таблицы 3.

Таблина 3

Размах входного	Устанавливаемая	Отведение
сигнала, мВ	чувствительность, мм / мВ	
0,4; 2,0; 4,0	5	
0,2; 1,0; 2,0	10	V6
0,1;0,5;1,0	20	
1,0	10	V1-V5

Зарегистрируйте сигналы. Скорость движения носителя записи - 50 мм/с. При регистрации в отведениях V1 - V5 к клемме X1 последовательно подключайте электроды C1 - C5, соответственно.

Вычислите относительную погрешность ЭК при измерении напряжения (5и), в процентах, по формуле (1).

где иизм - размах измеренного ЭК напряжения, мВ, вычисляют по формуле (2);

UHOM - размах напряжения, подаваемого на вход ЭК, мВ.

где пизм - линейный размер размаха регистрируемого сигнала, мм;

sном - номинальное значение установленной на ЭК чувствительности, мм/мВ.

Относительная погрешность ЭК при измерении напряжения должна быть:

- в диапазоне от 0,1 до 0,5 мВ в пределах ±15%;
- в диапазоне от 0.5 до 4.0 мВ в пределах ±7%
- 6.3.2 Определение относительной погрешности установки чувствительности ЭК проводите в соответствии со схемой, приведенной на рисунке A.1, с одновременной подачей на входы ЭК постоянного напряжения \pm (300 \pm 30) мВ при соответствующем положении переключателя S2 и гармонического сигнала частотой 10 Гц размахом 2 мВ.

Зарегистрируйте не менее пяти периодов входного сигнала при скорости движения носителя записи 50 мм/с. Измерения повторите для чувствительностей 20 и 5 мм/мВ при входных сигналах 1 мВ и 4 мВ, соответственно.

Вычислите относительную погрешность установки чувствительности (5s), в процентах, по формуле (3).

$$5_s = \frac{\text{SVI3M - SHOM}}{\text{SHOM}} 100 , \qquad (3)$$

g0 Эизм - измеренное значение чувствительности, которое вычисляют по формуле (4), мм/мВ; SHOM - номинальное значение установленной чувствительности, мм/мВ.

где пизм - линейный размер размаха регистрируемого сигнала, мм;

UBX - размах входного напряжения, мВ.

Проверить относительную погрешность установки чувствительности 10 мм/мВ в отведениях V1 - V5.

Относительная погрешность установки чувствительности ЭК должна быть в пределах ±5%.

6.3.3 Определение относительной погрешности установки скорости движения носителя записи и относительной погрешности • ЭК при измерении интервалов времени проводите в соответствии со схемой, приведенной на рисунке А.1, путем подачи на входы ЭК, сигналов прямоугольной формы размахом 0,5 мВ частотой 2,5 и 5,0Гц.

Зарегистрируйте при скорости движения носителя записи 25 мм/с сигналы с частотами 2,5 и 5,0 Гц, при скорости 50 мм/с - сигнал частотой 5 Гц. Регистрируйте не менее 20 периодов.

Вычислите относительную погрешность установки скорости движения носителя записи (5v), в процентах, по формуле (5).

$$_{8v} = \frac{\sqrt{\text{изм} - VHOM}}{VHOM} \cdot 100 = \frac{1_{\text{U3M}} - LHOM}{LHOM} \cdot 100 , (5)$$

где \/изм - измеренное значение скорости движения носителя записи, мм/с;

VHOM - номинальное значение установленной скорости носителя записи, мм/с;

1.изм - измеренный отрезок записанного сигнала, содержащий 10 полупериодов сигнала, мм;

LHOM - отрезок носителя записи, соответствующий 10 полупериодам записанного сигнала при номинальной скорости (LHOM=50 MM), MM.

Относительная погрешность установки скорости движения носителя записи должна быть в пределах +3%.

Вычислите относительную погрешность ЭК при измерении интервалов времени (5т), в процентах, по формуле (6).

$$5T = \frac{Tизм - Thom}{100} = \frac{- LHOM}{100} \cdot 100$$
, (6)

где Lu3M - измеренный отрезок записанного сигнала частотой 5 Гц. содержащий соответственно один, пять или 10 полупериодов сигнала, соответствующих измеренным интервалам времени Тизм, мм;

LHOM - отрезок носителя записи, соответствующий интервалам времени Thom = 0,1; 0,5; 1,0 c, мм.

Относительная погрешность ЭК при измерении интервалов времени должна быть в пределах ±7%.

6.3.4 Определение относительной погрешности ЭК при измерении ЧСС проводят в соответствии со схемой, приведенной на рисунке A.1.

Электрод F подключают к зажиму X1, остальные электроды (кроме N) подключают к зажиму X2, электрод N подключают к зажиму X3.

Проверку проводите подачей на входы ЭК сигналов от генератора, в котором установлено ПЗУ "ЧСС", согласно следующей методике:

- а) отожмите на генераторе кнопки А, В, С, Д. Установите на генераторе размах сигнала 2 В частотой 1 Гц. Зарегистрируйте не менее трех периодов сигнала. Показания цифрового индикатора ЭК должны быть от 57 до 63;
- б) нажмите кнопку A на генераторе. Зарегистрируйте не менее трех периодов сигнала. Показания цифрового индикатора ЭК должны быть от 57 до 63;
- в) отожмите кнопку А, нажмите кнопку В на генераторе. Установите на генераторе частоту 0,5 Гц. Зарегистрируйте не менее трех периодов сигнала. Показания цифрового индикатора ЭК должны быть от 29 до 31;
- г) нажмите на генераторе кнопку А. Установите на генераторе частоту 2,5 Гц. Зарегистрируйте не менее трех периодов сигнала. Показания цифрового индикатора ЭК должны быть от 143 до 157;
- д) установите на генераторе частоту 4 Гц. > Зарегистрируйте- не менее трех периодов сигнала. Показания цифрового индикатора ЭК должны быть от 228 до 252.
- .' Есјіїff ^показания цифрового индикатора находятся в Пределах указанных значений, то относительная погрешность ЭК при измерении ЧСС находится в пределах ±5%.
- 6.3.5 Определение относительной погрешности регистрации калибровочного сигнала проводят путем измерения линейных размеров размаха записи внешнего сигнала и внутреннего калибровочного сигнала.

Подайте на входы ЭК в соответствии со схемой, приведенной на рисунке А.1, прямоугольный импульс длительностью (100 \pm 2) мс или последовательность импульсов с периодом следования (200 \pm 4) мс размахом (1 \pm 0.015) мВ

Вычислите относительную погрешность регистрации калибровочного сигнала (5uk), в процентах, по формуле (7).

где hK - линейный размер размаха калибровочного сигнала, мм;

hв - линейный размер размаха регистрируемого внешнего сигнала, мм.

Относительная погрешность регистрации калибровочного сигнала должна быть в пределах ±5%.

6.3.6 Определение постоянной времени проводите в соответствии со схемой, приведенной на рисунке A.1, при чувствительности 5мм/мВ подачей на вход ЭК прямоугольных импульсов размахом (3 \pm 0,09) мВ и длительностью не менее 5 с.

Постоянную времени (t), с, вычисляйте по формуле (8).

где Іизм - длина отрезка записи (см. рисунок 1) регистрируемого сигнала, на котором сигнал амплитудой А затухает до уровня 0.37А без учета выбросов, мм;

VHOM - номинальная скорость движения носителя записи при регистрациии сигнала, мм/с.

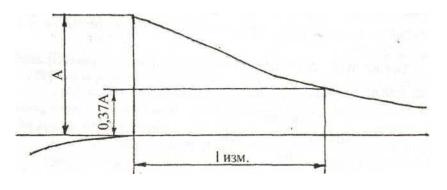


Рисунок 1

Изображение на записи переходной характеристики должно быть в пределах эффективной ширины записи монотонно спадающим и обращенным в сторону нулевой линии.

Постоянная времени должна быть не менее 3,2 с.

Повторите измерения для отведений I, II, V1 - V5. При этом к клемме X1 схемы, приведенной на рисунке A.1, подключайте соответственно электроды L, F, C1 - C5.

- 6.3.7 Определение неравномерности АЧХ проводите в соответствии со схемой, приведенной на рисунке А.1:
- а) при отключенном режекторном фильтре подайте на вход ЭК гармонический сигнал размахом 1 мВ частотой 0,5; 5; 10; 20; 30; 40; 50; 60; 75 Гц. Зарегистрируйте сигналы при скорости движения носителя записи 50 мм/с.

Вычислите неравномерность АЧХ (5f), в процентах, по формуле (9).

где hmax - размер размаха изображения сигнала на записи максимально отличающийся от ho в положительную и отрицательную стороны, мм;

ho - размер размаха изображения синусоиды на записи опорной частоты 10 Гц, мм;

Неравномерность АЧХ должна быть:

- в диапазоне частот от 0,5 до 60 Гц от минус 10 до + 5%:
- в диапазоне частот от 60 до 75 Гц от минус 30 до + 5%.
- б) при включенном режекторном фильтре подайте на вход ЭК гармонический сигнал размахом (1 \pm 0,015) мВ частотой 0,5; 5; 10; 20; 30; 40; 75 Гц. Зарегистрируйте сигналы при скорости движения носителя записи 50 мм/с. Вычислите неравномерность АЧХ (8f), в процентах, по формуле (9).

Неравномерность АЧХ должна быть:

- в диапазоне частот от 0,5 до 40 Гц от минус 10 до + 5%:
- в диапазоне частот от 60 до 75 Гц от минус 30 до + 5%.
- 6.3.8 Определение напряжения внутренних шумов, приведенных ко входу проводите при чувствительности 20 мм/мВ, скорости носителя записи 50 мм/с и в соответствии со схемой, приведенной на рисунке А.2, при заземленной точке А и разомкнутых переключателях S1 S9. Запись производите для всех отведений в течение времени не менее 5 с.

Вычислите напряжение внутренних шумов, приведенных ко входу (Uш), мкВ, по формуле (10).

где пизм.ш - измеренный на записи линейный размер максимального размаха шума, исключая ширину линии записи и не учитывая единичные выбросы с размахом не менее 1,5 мм, появляющиеся не чаще одного раза в секунду, мм;

shom - номинальное значение установленной чувствительности, мм/мВ.

Напряжение внутренних шумов, приведенных ко входу, должно быть не более 20 мкВ.

6.3.9 Определение коэффициента ослабления синфазных сигналов проводите в соответствии со схемой, приведенной на рисунке A.2.

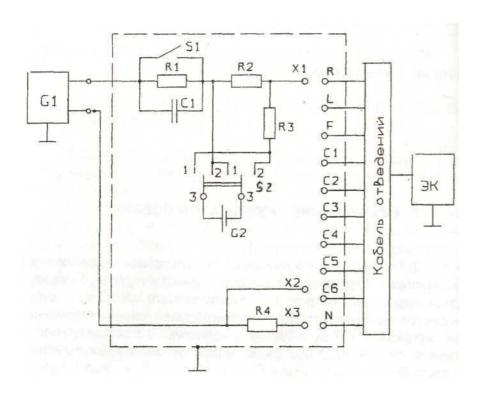
ЭК подайте Ha входы гармонический сигнал (50 ± 2.5) Гц. имеющий значение напряжения частотой (20 ± 0.6) В. Емкость Сt регулируют таким образом, чтобы суммарная емкость, Сt + Сx, равнялась С1. Это условие проверяют измерителем емкости при отключенном кабеле пациента. Затем подключите ЭК при помощи кабеля пациента и измерьте размах записанного сигнала по всем отведениям. размыкая поочередно переключатели S1 - S9. Проверку проводите при одновременной подаче на вход ЭК постоянного напряжения + (300 ± 30) мВ. Скорость движения носителя записи - 50мм/с.

Вычислите коэффициент ослабления синфазных сигналов (Кс) для максимального сигнала, зарегистрированного на носителе записи, по формуле (11).

$$\mathbf{Kc} = \begin{array}{c} \mathsf{Uc} - \mathsf{SH} - 10^* 3 \\ \mathsf{Kc} = \\ \mathsf{hmakc} \end{array} \tag{11}$$

где Uc - размах напряжения, равный 28 В, в точке А при отключенном кабеле пациента;

SH - номинальное значение установленной чувствительности, мм/мВ;


пмакс - максимальный линейный размер размаха регистрируемого сигнала, мм.

Коэффициент ослабления синфазных сигналов должен быть не менее 100000.

ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

7.1 При положительных результатах поверки в формуляре ЭК делается запись о годности и даты поверки, удостоверенная оттиском поверительного клейма, или выдается свидетельство о поверке установленной формы в соответствии с ПР 50.2.006-94 с нанесением поверительного клейма по ПР 50.2.007-94 в месте установки винтов на корпусе ЭК.

7.2 При отрицательных результатах поверки в формуляре ЭК делается запись параметров, по которым ЭК не соответствует требованиям методики поверки, оттиск поверительного клейма или свидетельство о поверке аннулируются и выписывается извещение о непригодности по ПР 50.2.006-94.

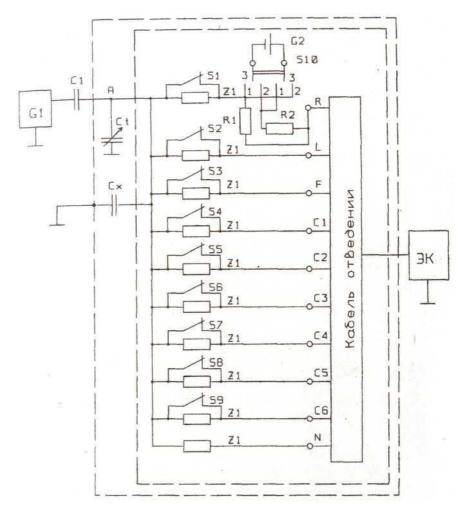
G1 - генератор ГФ-05;

G2 - источник постоянного напряжения 1,5 B ± 10%;

R1 - 51 κ OM \pm 5%;

R2-510M±5%;

R3 - 200 Om + 5%;


R4 - 100 Om \pm 5%;

C1 - 47 $\mu\Phi \pm 10\%$;

S1,S2 - переключатели;

Х1...Х3-зажимы

Рисунок А. 1

G1 - генератор ГФ-05;

G2 - источник постоянного напряжения 1,5 B ± 10%;

R1 - 51 Om \pm 5%;

 $R2 - 200 \text{ Om } \pm 5\%$;

 $C1 - 47 H\Phi + 10\%$;

S1...S10 - переключатели;

Z1 - параллельно соединенны резистор 51 кОм \pm 10% и конденсатор 47 нФ \pm 10%;

Сх - емкость монтажа;

Ct - конденсатор подстроечнь

Рисунок А.2